|--|

0106124

				11	12 3
Reg. No.		-			
1 1	 				

I Semester B.Sc. Degree Examination, August - 2021 **MATHEMATICS-I**

(CBCS Semester Scheme Repeater)

Time: 3 Hours

Maximum Marks: 70

Instructions to Candidates:

Answer All questions.

PART - A

Answer any FIVE questions.

 $(5 \times 2 = 10)$

- Define rank of the Matrix. 1. a)
 - Find the characteristic equation of the matrix $\begin{pmatrix} 1 & 2 \\ 5 & 4 \end{pmatrix}$. Find the nth derivative of $\log (2x + 3)$. b)
 - c)
 - If $u = x^2 y^3$, find $\frac{\partial^2 u}{\partial x \partial y}$.
 - Evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^6 x \ dx$.
 - Evaluate $\int_{0}^{2} \sin^4 x \cos^6 x \, dx$.
 - Find the equation of the sphere with centre at (1,0,-2) and radius 2 units. g)
 - Find the angle between the line $\frac{x-3}{2} = \frac{y+1}{-1} = \frac{z+4}{3}$ and the plane 2x+3y-z-4=0. h)

[P.T.O.

PART-B

Answer One full question.

 $(1 \times 15 = 15)$

- 2. a) Find the rank of the matrix $\begin{bmatrix} 4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \end{bmatrix}$ by reducing to row reduced echelon form.
 - Solve completely the following system of equations x+y=0, x-y-z=0, 3x+y-z=0.
 - c) Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$.

(OR)

- 3. a) Reduce the matrix $\begin{bmatrix} 1 & 2 & 4 \\ -1 & -2 & -4 \\ 2 & 4 & 8 \\ 3 & 6 & 9 \end{bmatrix}$ into normal form.
 - b) Verify the following system of equations for consistency and if consistant solve x+y+z=4, 2x+y-z=1 and x-y+2z=2
 - c) Verify Cayley Hamilton theorem for the matrix $\begin{bmatrix} 4 & -1 \\ 1 & 2 \end{bmatrix}$.

PART - C

Answer TWO full questions.

 $(2 \times 15 = 30)$

- 4. a) Find the nth derivative of $e^{ax} \cos(bx+c)$.
 - b) Find the nth derivative of $\frac{1}{6x^2 5x + 1}$.
 - c) If $y = \sin^{-1} x$ show that $(1 x^2) y_{n+2} (2n+1) x y_{n+1} n^2 y_n = 0$.
- 5. a) If $u = \phi(y + ax) + \psi(y ax)$ show that $\frac{\partial^2 u}{\partial x^2} = a^2 \frac{\partial^2 u}{\partial y^2}$.
 - b) State and prove the Euler's theorem.
 - c) If $u = (x-y)^2 + (y-z)^2 + (z-x)^2$ show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

- **6.** a) If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$ show that $\frac{\partial (x, y, z)}{\partial (r, \theta, \phi)} = r^2 \sin \theta$.
 - b) If x=u(1-v), y=uv find $J=\frac{\partial(x,y)}{\partial(u,v)}$ and $J'=\frac{\partial(u,v)}{\partial(x,y)}$. Also verify J.J'=1.
 - c) Obtain the reduction formula for $\int \tan^n x \ dx$.

(OR)

- 7. a) Evaluate $\int_{0}^{1} x^{\frac{3}{2}} (1-x)^{\frac{3}{2}} dx$.
 - b) Show that $\int_{0}^{\pi} x \sin^{3} x \ dx = \frac{2\pi}{3}.$
 - c) Evaluate $\int_{0}^{1} \frac{x^{\alpha} 1}{\log x} dx$ using Leibnitz's rule of differentiation under integral sign.

PART - D

Answer One full question.

 $(1 \times 15 = 15)$

- 8. a) Find the equation of the plane through the intersection of the planes x-2y+z-7=0 and 2x+3y-4z=0 and cutting intercept 4 units on the x axis.
 - b) Find the equation of the right circular cone whose vertex is (1,-1,2), axis along the line $\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{-2}$ and semi vertical angle 45°.
 - c) Find the equation of the sphere in vector form whose centre is at 2i-3j-4k and radius equal to 5 units.

(OR)

- 9. a) Find the length and the equation of the line of shortest distance between the lines $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1} \text{ and } \frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}.$
 - b) Derive the equation of the right circular cone in its standard form $x^2 + y^2 = z^2 \tan^2 \alpha$.
 - Find the equation of the right circular cylinder whose generators touch the sphere $x^2 + y^2 + z^2 = 9$ and are parallel to the line $\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z-3}{5}$.

LIBRARY

BMSCW LIBRARY